On the diagram of 132-avoiding permutations

نویسنده

  • Astrid Reifegerste
چکیده

The diagram of a 132-avoiding permutation can easily be characterized: it is simply the diagram of a partition. Based on this fact, we present a new bijection between 132-avoiding and 321-avoiding permutations. We will show that this bijection translates the correspondences between these permutations and Dyck paths given by Krattenthaler and by Billey-Jockusch-Stanley, respectively, to each other. Moreover, the diagram approach yields simple proofs for some enumerative results concerning forbidden patterns in 132-avoiding permutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Diagram of Schröder Permutations

Egge and Mansour have recently studied permutations which avoid 1243 and 2143 regarding the occurrence of certain additional patterns. Some of the open questions related to their work can easily be answered by using permutation diagrams. As for 132-avoiding permutations the diagram approach gives insights into the structure of {1243, 2143}-avoiding permutations that yield simple proofs for some...

متن کامل

Alternating, Pattern-Avoiding Permutations

We study the problem of counting alternating permutations avoiding collections of permutation patterns including 132. We construct a bijection between the set Sn(132) of 132-avoiding permutations and the set A2n+1(132) of alternating, 132avoiding permutations. For every set p1, . . . , pk of patterns and certain related patterns q1, . . . , qk, our bijection restricts to a bijection between Sn(...

متن کامل

Horse paths, restricted 132-avoiding permutations, continued fractions, and Chebyshev polynomials

Several authors have examined connections among 132-avoiding permutations, continued fractions, and Chebyshev polynomials of the second kind. In this paper we find analogues for some of these results for permutations π avoiding 132 and 1223 (there is no occurrence πi < πj < πj+1 such that 1 ≤ i ≤ j − 2) and provide a combinatorial interpretation for such permutations in terms of lattice paths. ...

متن کامل

On the combinatorics of quadrant marked mesh patterns in 132-avoiding permutations

The study of quadrant marked mesh patterns in 132-avoiding permutations was initiated by Kitaev, Remmel and Tiefenbruck. We refine several results of Kitaev, Remmel and Tiefenbruck by giving new combinatorial interpretations for the coefficients that appear in the generating functions for the distribution of quadrant marked mesh patterns in 132-avoiding permutations. In particular, we study qua...

متن کامل

The equidistribution of some vincular patterns on 132-avoiding permutations

A pattern in a permutation π is a sub-permutation of π, and this paper deals mainly with length three patterns. In 2012 Bóna showed the rather surprising fact that the cumulative number of occurrences of the patterns 231 and 213 are the same on the set of permutations avoiding 132, even though the pattern based statistics 231 and 213 do not have the same distribution on this set. Here we show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2003